Корреляционный анализ коэффициент корреляции

Содержание
  1. Тема: КОРРЕЛЯЦИОННЫЙ АНАЛИЗ
  2. Информационный блок
  3. Метод определения коэффициента ранговой корреляции или метод рангов, или метод Спирмена (по автору):
  4. Метод квадратов (Пирсона) вычисления коэффициента корреляции.
  5. Эталон решения
  6. пример. влияние введения раннего прикорма
  7. контрольные вопросы:
  8. Задачи для самостоятельного решения
  9. ВОПРОСЫ ДЛЯ ТЕСТОВОГО КОНТРОЛЯ
  10. Критические значения коэффициента корреляции rxy
  11. Критические значения Х2
  12. Линейный коэффициент корреляции Пирсона
  13. Выборочный коэффициент корреляции
  14. Как посчитать коэффициент корреляции в Excel
  15. Расчет доверительного интервала для коэффициента корреляции в Excel
  16. Несколько важных замечаний
  17. Корреляционный анализ
  18. Функциональная зависимость и корреляция
  19. Условия, при которых возможен расчет коэффициента корреляции Пирсона:
  20. Коэффициент корреляции Спирмена (rS)
  21. Свойства оценок коэффициентов корреляции
  22. Геометрическая интерпретация коэффициента корреляции
  23. Значимость коэффициента корреляции
  24. Литература
  25. Метод корреляционного анализа: пример. Корреляционный анализ – это..
  26. Понятие о корреляционном анализе
  27. Понятие о ложности корреляции
  28. Задачи корреляционного анализа
  29. Связь корреляционного анализа с регрессионным
  30. Правила отбора факторов корреляционного анализа
  31. Отображение результатов
  32. Трехмерное представление диаграммы разброса (рассеивания)
  33. Оценка тесноты связи
  34. Пример применения метода корреляционного анализа
  35. Использование ПО при проведении корреляционного анализа
  36. В заключение

Тема: КОРРЕЛЯЦИОННЫЙ АНАЛИЗ

Корреляционный анализ коэффициент корреляции

Врачу любой специальности в практической деятельности приходится наблюдать изменения в состоянии здоровья человека и отдельных групп населения, происходящие в результате воздействия определенных факторов, как в позитивном, так и в негативном направлении. Для того, чтобы уметь отличить случайное от объективного надо знать и уметь это делать. Этому служит данная тема.

Информационный блок

Все явления в природе и обществе находятся во взаимной связи. Различают две формы связи: функциональную и корреляционную.

Функциональная связь означает строгую зависимость явлений. При функциональной связи изменение какого либо одного явления вызывает обязательно строго определенные по величине изменения другого явления. Такого рода связь чаще наблюдается в физико-химических явлениях.

В области биологических и общественных явлений чаще встречаются взаимосвязи иного характера. Такого рода связи называют статистическими, или корреляционными.

Корреляция – латинское слово – означает соотношение, взаимосвязь между признаками.

[attention type=yellow]

При корреляционной связи значению каждой средней величины одного признака соответствует несколько значений другого взаимосвязанного с ним признака.

[/attention]

Связь между явлениями и признаками

Всем известно, что уровень антитоксина в крови и заболеваемость дифтерией взаимосвязаны между собой. При одинаковом уровне антитоксина в разных группах детей встречается разное количество заболевших.

В качестве примеров корреляционной связи можно указать на связь между количеством проведенных профилактических прививок и размерами заболеваемости, между размерами заболеваемости и смертности, между сроками изоляции инфекционных больных и частотой вторичных заболеваний в очаге, между качеством питьевой воды и заболеваемостью острыми кишечными инфекциями и т.д.

Вычисление рангового коэффициента корреляции

Параллельное изменение признаков двух явлений само по себе еще не говорит (хотя и наводит на мысль) о наличии связи между ними, так как может быть обусловлено случайным совпадением многих обстоятельств, не связанных друг с другом.

Измерение связи методами статистики целесообразно только тогда, когда наличие и материальная природа связи хотя бы предположительно установлена специальными методами данной науки.

При наличии действительной связи, установленной на основе конкретного анализа материальной природы изучаемых явлений, статистика дает возможность измерить размер (тесноту, силу) этой связи и установить степень зависимости между изучаемыми явлениями.

Измерение связи заключается в определении ее размеров (тесноты, силы).

Под теснотой связи понимается степень сопряженности связанных признаков, широта варьирования каждого из них при изменении средней величины другого.

Помимо тесноты связи, статистические методы позволяют вскрыть форму этой связи.

По силе связи корреляция колеблется от 0 до 1:

от 0 до 0,3 – слабая,

от 0,3 до 0,69 – средняя,

от 0,7 до 1 – сильная.

При силе связи равной 1 выявлена полная связь (функциональная связь). Сила связи измеряется коэффициентами корреляции.

По характеру связь может быть прямой и обозначается (+) и обратной (-).

Прямая связь – это такая связь, когда изменение одного признака влечет за собой изменение другого в том же направлении. Обратная связь – один признак увеличивается, другой уменьшается.

По форме (или направленности) корреляционные связи подразделяются на прямолинейные, когда наблюдается пропорциональное изменение одного признака в зависимости от изменения другого (графически это выражается в виде прямой линии), и криволинейные, когда одна величина признака изменяется непропорционально изменению другой (на графике эти связи изображаются параболами или иной кривой линией).

Методы сравнения наблюдений, которые независимо от вида распределения называют ранговыми или непараметрическими, т.е. независящими от формы распределения признаков в генеральной совокупности.

Их применение в медико-биологических исследованиях более оправдано хотя бы потому, что они менее трудоемкие по сравнению с другими.

Наиболее часто в этом случае используется метод определения коэффициента корреляции рангов (Спирмена). Этот коэффициент целесообразно использовать, при наличии небольшого числа наблюдений в случаях, когда сопоставляемые данные носят приближенный характер, а форма связи – криволинейна.

При наличии прямолинейной связи между взаимосвязанными компонентными признаками, особенно при большом числе наблюдений, рациональнее прибегать к параметрическим методам оценки, которые требуют вычисления определенных параметров средней величины, среднеквадратического отклонения, средней ошибки. При этом вычисление связи проводится при числе наблюдений 30 и менее сравниваемых пар по методу квадратов (К. Пирсона).

Метод определения коэффициента ранговой корреляции или метод рангов, или метод Спирмена (по автору):

Метод определения коэффициента корреляции рангов (Спирмена)

Последовательность расчета:

7. Определить направление связи. 8. Сделать выводы.

Задача:

Влияние удельного веса нестандартной воды по бак. показателям в Свердловском районе г. Перми на заболеваемость ОКИ.

Вывод: Между уровнем заболеваемости ОКИ и качеством воды существует сильная прямая связь.

Метод квадратов (Пирсона) вычисления коэффициента корреляции.

Этот метод более точен.

Недостаток: может быть использован только для количественных признаков.

Метод квадратов (Пирсона)

Эталон решения

задача: вычислить коэффициент корреляции, определить направление и силу связи между количеством кальция в воде и жесткостью воды, если известны следующие данные (табл. 1). оценить достоверность связи. сделать вывод.

таблица 1

обоснование выбора метода. для решения задачи выбран метод квадратов (пирсона), т.к. каждый из признаков (жесткость воды и количество кальция) имеет числовое выражение; нет открытых вариант.

решение.
последовательность расчетов изложена в тексте, результаты представлены в таблице. построив ряды из парных сопоставляемых признаков, обозначить их через х (жесткость воды в градусах) и через у (количество кальция в воде в мг/л).

таблица 2

пример. влияние введения раннего прикорма

влияние введения раннего прикорма

контрольные вопросы:

1.Какие виды связи могут быть между явлениями в природе и обществе?

2. Определение функциональной связи. Примеры.

3. Понятие о корреляционной связи. Примеры.

4. Направление, сила, форма связи.

5. Методы определения коэффициентов корреляции.

Задачи для самостоятельного решения

Задача 1.Определите характер и силу связи между возрастом пациентов, прошедших углубленный медицинский осмотр, и числом выявленных у них хронических заболеваний. Определите достоверность полученных результатов.

Таблица к Задаче 1.

Задача 2.Проведя анализ представленной таблицы, докажите, что существует зависимость между уровнем распространенности у детей кариеса и потреблением рафинированных углеводов? Какова форма этой зависимости?

Определите достоверность полученных результатов.

Таблица к Задаче 2.

Задача 3. Определите характер и силу связи между загрязненностью воздуха рабочей зоны и частотой возникновения заболеваний органов дыхания, основываясь на данных таблицы. Достоверны ли полученные результаты?

Таблица к Задаче 3.

Задача 4.Определите, существует ли зависимость между количеством детей в группах дошкольных учреждений и заболеваемостью ОРВИ среди них (см. данные таблицы)? Определите достоверность полученных результатов.

Таблица к Задаче 4.

Задача 5. На основании данных, представленных в таблице. Определите силу и характер связи между охватом населения города К. вакцинацией против гриппа и заболеваемостью гриппом.

Таблица к Задаче 5.

Задача 6.

В таблице представлены данные об охвате детского населения (в возрасте 2 лет) профилактическими прививками против эпидемического паротита, а также о заболеваемости детей эпидемическим паротитом за отчетный период в N – ской области. Определите, существует ли зависимость между охватом детского контингента профилактическими прививками и заболеваемостью эпидемическим паротитом.

Таблица к Задаче 6.

ВОПРОСЫ ДЛЯ ТЕСТОВОГО КОНТРОЛЯ

Выберите правильный ответ:

1.По характеру существующих связей между признаками в широком понимании связи подразделяются на:

1. Прямые и обратные

2. Статистические и функциональные

2. Все существующее в живой природе зависимости между признаками изучаются преимущественно:

1. Точными физико-математическими науками

2. Статистикой

3. Для решения элементарной задачи по определению зависимости между признаками и ее направленности рациональнее использовать:

1. Корреляционный анализ

2. Дисперсионный анализ

3. Аналитические группировки

4. Для полной характеристики статистических связей необходимо применять:

  1. Дисперсионный анализ данных
  2. Вычисление различных коэффициентов корреляции
  3. Регрессионный анализ

5. Корреляционная связь характеризуется как связь, при которой:

1. Выявляется полная характеристика особенностей взаимозависимости двух сравниваемых признаков

2. Любому значению одного из признаков соответствует только одно значение другого признака

3. Значению каждой величины одного признака может соответствовать несколько значений другого признака

6. Корреляционный анализ используется с целью:

[attention type=red]

1.Характеристики группового свойства статистической совокупности –репрезентативности данных

[/attention]

2. Оценки распределения изучаемого признака в любой статистической совокупности

3. Установления наличия связей между признаками и ее направленности

4. Изучения взаимозависимости между признаками по форме, направленности, силе и достоверности

7.Степень выраженности корреляции характеризуют коэффициенты:

1. Соотношения

2. Вариации

3. Регрессии

4. Наглядности

5. Стандартизованные

6. Корреляции Пирсона

7. Стьюдента

8. Ранговой корреляции Спирмена

Дополните:

8. По характеру связь между независимыми признаками может быть полной Или____________________, и статистической или______________________.

9. По направленности изменений изучаемых данных зависимость между сравниваемыми признаками может быть двух видов:_________и__________

10. По форме все корреляционные связи подразделяются на ________________ и __________________________.

11. Наиболее простым методом определения силы связи является метод __________________________________.

12. Наиболее точным способом определения степени связи между признаками является метод ___________________________.

13. Какой метод дает возможность определить наличие связи между признаками без определения ее силы ___________________________.

14.Коэффициент корреляции при функциональной связи равен __________________________.

15. Коэффициент корреляции при отсутствии связи равен_____________

16. По силе корреляционные связи подразделяются на

Эталоны ответов:

1. 2

2. 2

3. 3

4. 1

5. 3

6. 3

7. 3.6.8.

8. Функциональной, корреляционной

9. Прямая, обратная

10. Прямолинейные, криволинейные

11. Спирмена

12. Пирсона

13. x

14. 1

15. 0

16. Слабые, средние, сильные.

Критические значения коэффициента корреляции rxy

Критические значения коэффициента корреляции rxy

Критические значения Х2

Критические значения Х2

Источник: https://zen.yandex.ru/media/id/5f4e2f3978b8ab69e2e27820/tema-korreliacionnyi-analiz-5f85c6aa01c3532acc82f852

Линейный коэффициент корреляции Пирсона

Корреляционный анализ коэффициент корреляции

Обнаружение взаимосвязей между явлениями – одна из главных задач статистического анализа. На то есть две причины. Первая. Если известно, что один процесс зависит от другого, то на первый можно оказывать влияние через второй. Вторая. Даже если причинно-следственная связь отсутствует, то по изменению одного показателя можно предсказать изменение другого.

Взаимосвязь двух переменных проявляется в совместной вариации: при изменении одного показателя имеет место тенденция изменения другого. Такая взаимосвязь называется корреляцией, а раздел статистики, который занимается взаимосвязями – корреляционный анализ.

Корреляция – это, простыми словами, взаимосвязанное изменение показателей. Она характеризуется направлением, формой и теснотой. Ниже представлены примеры корреляционной связи.

Далее будет рассматриваться только линейная корреляция. На диаграмме рассеяния (график корреляции) изображена взаимосвязь двух переменных X и Y. Пунктиром показаны средние.

При положительном отклонении X от своей средней, Y также в большинстве случаев отклоняется в положительную сторону от своей средней. Для X меньше среднего, Y, как правило, тоже ниже среднего.

Это прямая или положительная корреляция.

Бывает обратная или отрицательная корреляция, когда положительное отклонение от средней X ассоциируется с отрицательным отклонением от средней Y или наоборот.

Линейность корреляции проявляется в том, что точки расположены вдоль прямой линии. Положительный или отрицательный наклон такой линии определяется направлением взаимосвязи.

Крайне важная характеристика корреляции – теснота. Чем теснее взаимосвязь, тем ближе к прямой точки на диаграмме. Как же ее измерить?

Складывать отклонения каждого показателя от своей средней нет смысла, получим нуль. Похожая проблема встречалась при измерении вариации, а точнее дисперсии. Там эту проблему обходят через возведение каждого отклонения в квадрат.

Квадрат отклонения от средней измеряет вариацию показателя как бы относительно самого себя. Если второй множитель в числителе заменить на отклонение от средней второго показателя, то получится совместная вариация двух переменных, которая называется ковариацией.

Чем больше пар имеют одинаковый знак отклонения от средней, тем больше сумма в числителе (произведение двух отрицательных чисел также дает положительное число).

Большая положительная ковариация говорит о прямой взаимосвязи между переменными. Обратная взаимосвязь дает отрицательную ковариацию.

[attention type=green]

Если количество совпадающих по знаку отклонений примерно равно количеству не совпадающих, то ковариация стремится к нулю, что говорит об отсутствии линейной взаимосвязи.

[/attention]

Таким образом, чем больше по модулю ковариация, тем теснее линейная взаимосвязь. Однако значение ковариации зависит от масштаба данных, поэтому невозможно сравнивать корреляцию для разных переменных.

Можно определить только направление по знаку. Для получения стандартизованной величины тесноты взаимосвязи нужно избавиться от единиц измерения путем деления ковариации на произведение стандартных отклонений обеих переменных.

В итоге получится формула коэффициента корреляции Пирсона.

Показатель имеет полное название линейный коэффициент корреляции Пирсона или просто коэффициент корреляции.

Коэффициент корреляции показывает тесноту линейной взаимосвязи и изменяется в диапазоне от -1 до 1. -1 (минус один) означает полную (функциональную) линейную обратную взаимосвязь.

1 (один) – полную (функциональную) линейную положительную взаимосвязь. 0 – отсутствие линейной корреляции (но не обязательно взаимосвязи). На практике всегда получаются промежуточные значения.

Для наглядности ниже представлены несколько примеров с разными значениями коэффициента корреляции.

Таким образом, ковариация и корреляция отражают тесноту линейной взаимосвязи. Последняя используется намного чаще, т.к. является относительным показателем и не имеет единиц измерения.

[attention type=yellow]

Диаграммы рассеяния дают наглядное представление, что измеряет коэффициент корреляции. Однако нужна более формальная интерпретация. Эту роль выполняет квадрат коэффициента корреляции r2, который называется коэффициентом детерминации, и обычно применяется при оценке качества регрессионных моделей. Снова представьте линию, вокруг которой расположены точки.

[/attention]

Линейная функция является моделью взаимосвязи между X иY и показывает ожидаемое значение Y при заданном X. Коэффициент детерминации – это соотношение дисперсии ожидаемых Y (точек на прямой линии) к общей дисперсии Y, или доля объясненной вариации Y. При r = 0,1 r2 = 0,01 или 1%, при r = 0,5 r2 = 0,25 или 25%.

Выборочный коэффициент корреляции

Коэффициент корреляции обычно рассчитывают по выборке. Значит, у аналитика в распоряжении не истинное значение, а оценка, которая всегда ошибочна. Если выборка была репрезентативной, то истинное значение коэффициента корреляции находится где-то относительно недалеко от оценки. Насколько далеко, можно определить через доверительные интервалы.

Согласно Центральное Предельной Теореме распределение оценки любого показателя стремится к нормальному с ростом выборки. Но есть проблемка. Распределение коэффициента корреляции вблизи придельных значений не является симметричным. Ниже пример распределения при истинном коэффициенте корреляции ρ = 0,86.

Предельное значение не дает выйти за 1 и, как бы «поджимает» распределение справа. Симметричная ситуация наблюдается, если коэффициент корреляции близок к -1.

В общем рассчитывать на свойства нормального распределения нельзя. Поэтому Фишер предложил провести преобразование выборочного коэффициента корреляции по формуле:

Распределение z для тех же r имеет следующий вид.

Намного ближе к нормальному. Стандартная ошибка z равна:

Далее исходя из свойств нормального распределения несложно найти верхнюю и нижнюю границы доверительного интервала для z. Определим квантиль стандартного нормального распределения для заданной доверительной вероятности, т.е. количество стандартных отклонений от центра распределения.

cγ – квантиль стандартного нормального распределения;
N-1 – функция обратного стандартного распределения;
γ – доверительная вероятность (часто 95%).
Затем рассчитаем границы доверительного интервала.

Нижняя граница z:

Верхняя граница z:

Теперь обратным преобразованием Фишера из z вернемся к r.
Нижняя граница r:

Верхняя граница r:

Это была теоретическая часть. Переходим к практике расчетов.

Как посчитать коэффициент корреляции в Excel

Корреляционный анализ в Excel лучше начинать с визуализации.

На диаграмме видна взаимосвязь двух переменных. Рассчитаем коэффициент парной корреляции с помощью функции Excel КОРРЕЛ. В аргументах нужно указать два диапазона.

Коэффициент корреляции 0,88 показывает довольно тесную взаимосвязь между двумя показателями. Но это лишь оценка, поэтому переходим к интервальному оцениванию.

Расчет доверительного интервала для коэффициента корреляции в Excel

В Эксель нет готовых функций для расчета доверительного интервала коэффициента корреляции, как для средней арифметической. Поэтому план такой:

— Делаем преобразование Фишера для r.
— На основе нормальной модели рассчитываем доверительный интервал для z.
— Делаем обратное преобразование Фишера из z в r.

Удивительно, но для преобразования Фишера в Excel есть специальная функция ФИШЕР.

Стандартная ошибка z легко подсчитывается с помощью формулы.

Используя функцию НОРМ.СТ.ОБР, определим квантиль нормального распределения. Доверительную вероятность возьмем 95%.

[attention type=red]

Значение 1,96 хорошо известно любому опытному аналитику. В пределах ±1,96σ от средней находится 95% нормально распределенных величин.

[/attention]

Используя z, стандартную ошибку и квантиль, легко определим доверительные границы z.

Последний шаг – обратное преобразование Фишера из z назад в r с помощью функции Excel ФИШЕРОБР. Получим доверительный интервал коэффициента корреляции.

Нижняя граница 95%-го доверительного интервала коэффициента корреляции – 0,724, верхняя граница – 0,953.

Надо пояснить, что значит значимая корреляция. Коэффициент корреляции статистически значим, если его доверительный интервал не включает 0, то есть истинное значение по генеральной совокупности наверняка имеет тот же знак, что и выборочная оценка.

Несколько важных замечаний

1. Коэффициент корреляции Пирсона чувствителен к выбросам. Одно аномальное значение может существенно исказить коэффициент.

Поэтому перед проведением анализа следует проверить и при необходимости удалить выбросы. Другой вариант – перейти к ранговому коэффициенту корреляции Спирмена.

Рассчитывается также, только не по исходным значениям, а по их рангам (пример показан в ролике под статьей).

[attention type=green]

2. Синоним корреляции – это взаимосвязь или совместная вариация. Поэтому наличие корреляции (r ≠ 0) еще не означает причинно-следственную связь между переменными. Вполне возможно, что совместная вариация обусловлена влиянием третьей переменной. Совместное изменение переменных без причинно-следственной связи называется ложная корреляция.

[/attention]

3. Отсутствие линейной корреляции (r = 0) не означает отсутствие взаимосвязи. Она может быть нелинейной. Частично эту проблему решает ранговая корреляция Спирмена, которая показывает совместный рост или снижение рангов, независимо от формы взаимосвязи.

В видео показан расчет коэффициента корреляции Пирсона с доверительными интервалами, ранговый коэффициент корреляции Спирмена.

↓ Скачать файл с примером ↓

в социальных сетях:

Источник: https://statanaliz.info/statistica/korrelyaciya-i-regressiya/linejnyj-koefficient-korrelyacii-pirsona/

Корреляционный анализ

Корреляционный анализ коэффициент корреляции

Корреляционный анализ – раздел математической статистики, исследующий зависимости между двумя или более случайными величинами. Термин «Correlation» означает взаимосвязь, взаимоотношение.

Функциональная зависимость и корреляция

Еще Гиппократ обратил внимание на то, что между телосложением и темпераментом людей, между строением их тела и предрасположенностью  к заболеваниям существует определенная взаимосвязь.

В области физической культуры и спорта можно привести много примеров такой взаимосвязи. Например, от уровня силы во многом зависит результат, показанный спортсменом в таких видах спорта, как тяжелая атлетика, пауэрлифтинг, гиревой спорт, метание диска и толкание ядра и т.д.

  Результат в беге на 100 м во многом зависит от процента содержания в мышцах спортсменов быстрых мышечных волокон (II типа).  Доказано, что у выдающихся спринтеров этот показатель превышает 80%.

  Чтобы определить, насколько сильна взаимосвязь между переменными (признаками) используется корреляционный анализ.

Две случайные величины X и Y могут быть:

  • связаны функциональной зависимостью (жестко, как зависимость переменных в математическом анализе);
  • независимыми;
  • связаны стохастической (вероятностной зависимостью) при которой изменение одной величины влечет изменение распределения другой.

В качестве меры связи между случайными величинами используется коэффициент корреляции. Коэффициент корреляции для генеральной совокупности обозначается ρ. Однако, как правило, он неизвестен.

Поэтому он оценивается по экспериментальным данным, представляющим выборку объема n, полученную при совместном измерении двух переменных (признаков) X и Y. Коэффициент корреляции, определяемый по выборочным данным называется выборочным коэффициентом корреляции (или просто коэффициентом корреляции). Его принято обозначать символом r.

Наиболее часто в качестве оценок генерального коэффициента корреляции используется коэффициент корреляции Пирсона (r) и коэффициент корреляции Спирмена (rs).

Условия, при которых возможен расчет коэффициента корреляции Пирсона:

  1. Экспериментальные данные должны быть представлены в только в интервальной шкале или шкале отношений.
  2. Распределение экспериментальных данных подчиняется нормальному закону.
  3. Предполагается линейная зависимость между случайными величинами X и Y.

Коэффициент корреляции Спирмена (rS)

При расчете коэффициента корреляции Спирмена требования к исходным данным менее строгие, а именно:

  1. Данные могут быть представлены в порядковой, интервальной шкале или шкале отношений.
  2. Допускается любой закон распределения случайных величин X и Y.
  3. Между случайными величинами X и Y должна существовать монотонно-возрастающая или монотонно-убывающая зависимость.

Свойства оценок коэффициентов корреляции

Рассчитанные коэффициенты корреляции могут принимать значения от -1 до +1.

  1. Если коэффициент корреляции равен: r =+1 и r = -1, это означает, что случайные величины X и Y связаны жесткой линейной зависимостью.
  2. Если r ≠ 0, то чем ближе |r| к единице, тем сильнее линейная зависимость случайных величин X и Y.
  3. Если коэффициент корреляции положительный (r > 0) – это означает, что между случайными величинами X и Y существует положительная корреляция (или другими словами положительная корреляционная зависимость). Примером положительной корреляционной зависимости является увеличение результата прыжка в длину с увеличением силы мышц ног (рис.1А).
  4. Eсли коэффициент корреляции отрицательный (r < 0) – это означает, что между случайными величинами X и Y существует отрицательная корреляция (или другими словами отрицательная корреляционная зависимость). Примером отрицательной корреляционной зависимости является уменьшение результата пробегания 100 м с увеличением силы мышц ног (рис. 1Б)
  5. Если коэффициент корреляции равен нулю (r = 0) – это означает, что корреляции нет; случайные величины X и Y некоррелированы (рис. 1В). Другими словами, это означает, что между случайными величинами X и Y нет взаимосвязи.

Геометрическая интерпретация коэффициента корреляции

Корреляция считается положительной, если график имеет выраженное направление из левого нижнего угла в правый верхний угол и с увеличением значений одной переменной другая также увеличивается;

Корреляция считается отрицательной, если график имеет направление из левого верхнего угла в правый нижний, и с увеличением одной переменной, другая уменьшается;

Корреляция отсутствует, когда у корреляционного облака нет четко выраженного направления, точки рассеиваются далеко от воображаемой прямой и нельзя сказать, что с увеличением одной переменной другая уменьшается или увеличивается.

Рис. 1. Геометрическая интерпретация коэффициента корреляции

Значимость коэффициента корреляции

Коэффициент корреляции между случайными величинами X и Y для генеральной совокупности как правило, неизвестен.

Однако его можно оценить, рассчитав выборочный коэффициент корреляции (коэффициент корреляции Пирсона или Спирмена).

Но при заменяя генеральную совокупность выборкой при оценке коэффициента корреляции допускается ошибка. Поэтому важно оценить значимость (достоверность) рассчитанного коэффициента корреляции.

[attention type=yellow]

Например, в эксперименте участвовало 10 человек. Оценивалась взаимосвязь между результатами в беге на 30 м и 100 м. Получен коэффициент корреляции r = 0,611. Чтобы оценить значимость коэффициента корреляции нужно сравнить его с критическим, величина которого зависит от объема выборки и уровня значимости.

[/attention]

Если фактическое значение коэффициента корреляции больше, чем критическое, это означает, что коэффициент корреляции достоверен (значим). В нашем случае критическое значение коэффициента корреляции при n= 10 и α = 0,05 составляет r0,05 =0,632 (в таблице 1 это значение выделено жирным шрифтом).

Из этого следует, что рассчитанный коэффициент корреляции статистически недостоверен. Приводить его в своих исследованиях нежелательно.

Таблица 1 — Критические значения коэффициента корреляции Пирсона

n0,050,010,001
30,99690,9998770,99999877
40,9500,99000,9990
50,8780,95970,99114
60,8110,91720,9741
70,7540,8750,9509
80,7070,8340,9244
90,6660,7980,898
100,6320,7650,872
200,4440,5610,679
300,3610,4630,570
400,3120,4020,501
500,2790,3610,451

В итоговой таблице необходимо указать объем выборки, чтобы читающий мог оценить значимость (достоверность) вычисленных коэффициентов корреляции.

Иногда в публикациях приводятся только значимые коэффициенты корреляции, а вместо незначимых ставится прочерк. В таблице 2 авторы указали, что объем выборки равен n = 32.

Критическое значение коэффициента корреляции при n = 32 и a = 0,05 составляет r0,05 = 0,349 (В.С.Иванов, 1990). Следовательно, все коэффициенты корреляции достоверны.

Таблица 2 — Значения коэффициентов корреляции между результатами в скоростно-силовых тестах и результатом в толкании ядра с разгоном n=32, спортивный результат группы варьировал от 12,00 м до 20,50. Критическое значение коэффициента корреляции при n = 32 и a = 0,05 составляет r0,05 = 0,349 (по: Я.Е.Ланка, Ан.А.Шалманов, 1982).

Упражнение123456
1Толкание ядра с разгона10,970,840,830,730,73
2Толкание ядра с места10,840,820,740,76
3Бросок ядра назад10,850,710,66
4Бросок ядра вперед10,660,62
5Приседание со штангой10,58
6Жим штанги лежа1

Литература

  1. Боровиков В.П., Боровиков И.П. STATISTICA Статистический анализ и обработка данных в среде Windows.– М.: Филинъ, 1995.– 608 с.
  2. Дюк В. Обработка данных на ПК в примерах.– СПб: Питер, 1997.– 240 с.
  3. Ежевская К.А.

    Особенности динамики показателей скоростных способностей детей 4-6 лет в условиях стандартной тестовой тренировочной программы в детском саду //Теория и практика физической культуры, 1995.– № 3 .–С.15-18.

  4. Жданов Л.Н. Возраст спортивных достижений //Теория и практика физической культуры, 1996.– № 6 .– С. 59-60.
  5. Зациорский В.М.

    Осторожно: статистика! // Теория и практика физической культуры, 1989.– № 2.– С. 52-55.

  6. Катранов, А.Г. Компьютерная обработка данных экспериментальных исследований / А.Г. Катранов, А.В. Самсонова /Учебное пособие.– СПб: СПбГАФК им. П.Ф. Лесгафта, 2005.– 132 с.
  7. Ланка Я.Е., Шалманов Ан. А. Биомеханика толкания ядра. – М: Физкультура и спорт, 1982.- 72 с.

  8. Лапшина Г.Г. Особенности физического состояния студенток гуманитарного факультета // Теория и практика физической культуры, 1989.–№ 4.– С. 18-20
  9. Марченко В.В., Дворкин Л.С., Рогозян В.Н. Анализ силовой подготовки тяжелоатлета в нескольких макроциклах //Теория и практика физической культуры, 1998.– № 8.– С. 18–22.
  10. Основы математической статистики: Учебное пособие для ин-тов физ. культ./ /Под ред. В.С.Иванова. М.: Физкультура и спорт, 1990.– 176 с.
  11. Тюрин Ю.Н., Макаров А.А. Анализ данных на компьютере.– М.: Финансы и статистика, 1995.– 384 с.

Источник: https://allasamsonova.ru/statistika/korreljacionnyj-analiz/

Метод корреляционного анализа: пример. Корреляционный анализ – это..

Корреляционный анализ коэффициент корреляции

В научных исследованиях часто возникает необходимость в нахождении связи между результативными и факторными переменными (урожайностью какой-либо культуры и количеством осадков, ростом и весом человека в однородных группах по полу и возрасту, частотой пульса и температурой тела и т.д.).

Вторые представляют собой признаки, способствующие изменению таковых, связанных с ними (первыми).

Понятие о корреляционном анализе

Существует множество определений термина. Исходя из вышеизложенного, можно сказать, что корреляционный анализ — это метод, применяющийся с целью проверки гипотезы о статистической значимости двух и более переменных, если исследователь их может измерять, но не изменять.

Есть и другие определения рассматриваемого понятия. Корреляционный анализ — это метод обработки статистических данных, заключающийся в изучении коэффициентов корреляции между переменными.

[attention type=red]

При этом сравниваются коэффициенты корреляции между одной парой или множеством пар признаков, для установления между ними статистических взаимосвязей.

[/attention]

Корреляционный анализ — это метод по изучению статистической зависимости между случайными величинами с необязательным наличием строгого функционального характера, при которой динамика одной случайной величины приводит к динамике математического ожидания другой.

Понятие о ложности корреляции

При проведении корреляционного анализа необходимо учитывать, что его можно провести по отношению к любой совокупности признаков, зачастую абсурдных по отношению друг к другу. Порой они не имеют никакой причинной связи друг с другом.

В этом случае говорят о ложной корреляции.

Задачи корреляционного анализа

Исходя из приведенных выше определений, можно сформулировать следующие задачи описываемого метода: получить информацию об одной из искомых переменных с помощью другой; определить тесноту связи между исследуемыми переменными.

Корреляционный анализ предполагает определение зависимости между изучаемыми признаками, в связи с чем задачи корреляционного анализа можно дополнить следующими:

  • выявление факторов, оказывающих наибольшее влияние на результативный признак;
  • выявление неизученных ранее причин связей;
  • построение корреляционной модели с ее параметрическим анализом;
  • исследование значимости параметров связи и их интервальная оценка.

Связь корреляционного анализа с регрессионным

Метод корреляционного анализа часто не ограничивается нахождением тесноты связи между исследуемыми величинами.

Иногда он дополняется составлением уравнений регрессии, которые получают с помощью одноименного анализа, и представляющих собой описание корреляционной зависимости между результирующим и факторным (факторными) признаком (признаками). Этот метод в совокупности с рассматриваемым анализом составляет метод корреляционно-регрессионного анализа.

Результативные факторы зависят от одного до нескольких факторов.

Метод корреляционного анализа может применяться в том случае, если имеется большое количество наблюдений о величине результативных и факторных показателей (факторов), при этом исследуемые факторы должны быть количественными и отражаться в конкретных источниках.

Первое может определяться нормальным законом — в этом случае результатом корреляционного анализа выступают коэффициенты корреляции Пирсона, либо, в случае, если признаки не подчиняются этому закону, используется коэффициент ранговой корреляции Спирмена.

Правила отбора факторов корреляционного анализа

При применении данного метода необходимо определиться с факторами, оказывающими влияние на результативные показатели. Их отбирают с учетом того, что между показателями должны присутствовать причинно-следственные связи.

В случае создания многофакторной корреляционной модели отбирают те из них, которые оказывают существенное влияние на результирующий показатель, при этом взаимозависимые факторы с коэффициентом парной корреляции более 0,85 в корреляционную модель предпочтительно не включать, как и такие, у которых связь с результативным параметром носит непрямолинейный или функциональный характер.

Отображение результатов

Результаты корреляционного анализа могут быть представлены в текстовом и графическом видах. В первом случае они представляются как коэффициент корреляции, во втором — в виде диаграммы разброса.

При отсутствии корреляции между параметрами точки на диаграмме расположены хаотично, средняя степень связи характеризуется большей степенью упорядоченности и характеризуется более-менее равномерной удаленностью нанесенных отметок от медианы. Сильная связь стремится к прямой и при r=1 точечный график представляет собой ровную линию. Обратная корреляция отличается направленностью графика из левого верхнего в нижний правый, прямая — из нижнего левого в верхний правый угол.

Трехмерное представление диаграммы разброса (рассеивания)

Помимо традиционного 2D-представления диаграммы разброса в настоящее время используется 3D-отображение графического представления корреляционного анализа.

Также используется матрица диаграммы рассеивания, которая отображает все парные графики на одном рисунке в матричном формате. Для n переменных матрица содержит n строк и n столбцов.

Диаграмма, расположенная на пересечении i-ой строки и j-ого столбца, представляет собой график переменных Xi по сравнению с Xj.

Таким образом, каждая строка и столбец являются одним измерением, отдельная ячейка отображает диаграмму рассеивания двух измерений.

Оценка тесноты связи

Теснота корреляционной связи определяется по коэффициенту корреляции (r): сильная — r = ±0,7 до ±1, средняя — r = ±0,3 до ±0,699, слабая — r = 0 до ±0,299. Данная классификация не является строгой. На рисунке показана несколько иная схема.

Пример применения метода корреляционного анализа

В Великобритании было предпринято любопытное исследование. Оно посвящено связи курения с раком легких, и проводилось путем корреляционного анализа. Это наблюдение представлено ниже.

Исходные данные для корреляционного анализа

Профессиональная группа

курение

смертность

Фермеры, лесники и рыбаки

77

84

Шахтеры и работники карьеров

137

116

Производители газа, кокса и химических веществ

117

123

Изготовители стекла и керамики

94

128

Работники печей, кузнечных, литейных и прокатных станов

116

155

Работники электротехники и электроники

102

101

Инженерные и смежные профессии

111

118

Деревообрабатывающие производства

93

113

Кожевенники

88

104

Текстильные рабочие

102

88

Изготовители рабочей одежды

91

104

Работники пищевой, питьевой и табачной промышленности

104

129

Производители бумаги и печати

107

86

Производители других продуктов

112

96

Строители

113

144

Художники и декораторы

110

139

Водители стационарных двигателей, кранов и т. д.

125

113

Рабочие, не включенные в другие места

133

146

Работники транспорта и связи

115

128

Складские рабочие, кладовщики, упаковщики и работники разливочных машин

105

115

Канцелярские работники

87

79

Продавцы

91

85

Работники службы спорта и отдыха

100

120

Администраторы и менеджеры

76

60

Профессионалы, технические работники и художники

66

51

Начинаем корреляционный анализ. Решение лучше начинать для наглядности с графического метода, для чего построим диаграмму рассеивания (разброса).

Она демонстрирует прямую связь. Однако на основании только графического метода сделать однозначный вывод сложно. Поэтому продолжим выполнять корреляционный анализ. Пример расчета коэффициента корреляции представлен ниже.

С помощью программных средств (на примере MS Excel будет описано далее) определяем коэффициент корреляции, который составляет 0,716, что означает сильную связь между исследуемыми параметрами.

Определим статистическую достоверность полученного значения по соответствующей таблице, для чего нам нужно вычесть из 25 пар значений 2, в результате чего получим 23 и по этой строке в таблице найдем r критическое для p=0,01 (поскольку это медицинские данные, здесь используется более строгая зависимость, в остальных случаях достаточно p=0,05), которое составляет 0,51 для данного корреляционного анализа. Пример продемонстрировал, что r расчетное больше r критического, значение коэффициента корреляции считается статистически достоверным.

Использование ПО при проведении корреляционного анализа

Описываемый вид статистической обработки данных может осуществляться с помощью программного обеспечения, в частности, MS Excel. Корреляционный анализ в Excel предполагает вычисление следующих парамет­ров с использованием функций:

1. Коэффициент корреляции определяется с помощью функции КОРРЕЛ [CORREL](массив1; массив2). Массив1,2 — ячейка интервала значений результативных и факторных переменных.

Линейный коэффициент корреляции также называется коэффициентом корреляции Пирсона, в связи с чем, начиная с Excel 2007, можно использовать функцию ПИРСОН (PEARSON) с теми же массивами.

[attention type=green]

Графическое отображение корреляционного анализа в Excel производится с помощью панели «Диаграммы» с выбором «Точечная диаграмма».

[/attention]

После указания исходных данных получаем график.

2. Оценка значимости коэффициента парной корреляции с использованием t-критерия Стьюдента.

Рассчитанное значение t-критерия сравнивается с табличной (критической) величиной данного показателя из соответствующей таблицы значений рассматриваемого параметра с учетом заданного уровня значимости и числа степеней свободы. Эта оценка осуществляется с использованием функции СТЬЮДРАСПОБР (вероятность; степени_свободы).

3. Матрица коэффициентов парной корреляции. Анализ осуществляется с помощью средства «Анализ данных», в котором выбирается «Корреляция».

Статистическую оценку коэффициентов парной корреляции осуществляют при сравнении его абсолютной величины с табличным (критическим) значением.

При превышении расчетного коэффициента парной корреляции над таковым критическим можно говорить, с учетом заданной степени вероятности, что нулевая гипотеза о значимости линейной связи не отвергается.

В заключение

Использование в научных исследованиях метода корреляционного анализа позволяет определить связь между различными факторами и результативными показателями. При этом необходимо учитывать, что высокий коэффициент корреляции можно получить и из абсурдной пары или множества данных, в связи с чем данный вид анализа нужно осуществлять на достаточно большом массиве данных.

После получения расчетного значения r его желательно сравнить с r критическим для подтверждения статистической достоверности определенной величины.

Корреляционный анализ может осуществляться вручную с использованием формул, либо с помощью программных средств, в частности MS Excel.

[attention type=yellow]

Здесь же можно построить диаграмму разброса (рассеивания) с целью наглядного представления о связи между изучаемыми факторами корреляционного анализа и результативным признаком.

[/attention]

Источник: https://FB.ru/article/341341/metod-korrelyatsionnogo-analiza-primer-korrelyatsionnyiy-analiz---eto

Все о банке
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: